
CS Study Group FY07 Phase 2

Machine-Checked Metatheory for
Security-Oriented Languages

Final Technical Report

Pis: Stephanie Weirich*
Steve Zdancewic

Mail: Computer and Information Science Department
University of Pennsylvania
3300 Walnut St.
Philadelphia, PA 19104

Email: sweirich@cis.upenn.edu
Phone: 215-573-2821
Fax: 215-898-0587

20101029099

DEFENSE TECHNICAL INFORMATION CENTER

DTIC® has determined on >£<. / c%$/£) that this Technical Document has the
Distribution Statement checked below. The current distribution for this document can
be found in the DTIC® Technical Report Database.

x. DISTRIBUTION STATEMENT A. Approved for public release; distribution is
unlimited. $e< ~"i&9$f\

• © COPYRIGHTED; U.S. Government or Federal Rights License. All other rights
and uses except those permitted by copyright law are reserved by the copyright owner.

• DISTRIBUTION STATEMENT B. Distribution authorized to U.S. Government
agencies only (fill in reason) (date of determination). Other requests for this document
shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT C. Distribution authorized to U.S. Government
Agencies and their contractors (fill in reason) (date of determination). Other requests for
this document shall be referred to (insert controlling DoD office)

• DISTRIBUTION STATEMENT D. Distribution authorized to the Department of
Defense and U.S. DoD contractors only (fill in reason) (date of determination). Other
requests shall be referred to (insert controlling DoD office).

• DISTRIBUTION STATEMENT E. Distribution authorized to DoD Components only
(fill in reason) (date of determination). Other requests shall be referred to (insert
controlling DoD office).

• DISTRIBUTION STATEMENT F. Further dissemination only as directed by
(inserting controlling DoD office) (date of determination) or higher DoD authority.

Distribution Statement F is also used when a document does not contain a distribution
statement and no distribution statement can be determined.

• DISTRIBUTION STATEMENT X. Distribution authorized to U.S. Government
Agencies and private individuals or enterprises eligible to obtain export-controlled
technical data in accordance with DoDD 5230.25; (date of determination). DoD
Controlling Office is (insert controlling DoD office).

1 Project Introduction

For the past few years, the Department of Defense has been transforming its culture to be based
on information sharing. Organizations within the DoD recognize that this change leads to greater
effectiveness. For example, the doctrine of network-centric operations emphasizes shared situa-
tional awareness for warfighters to enable collaboration and self-synchronization, and to enhance
sustainability and speed of command [19]. Combatant Commands use Common Operating Pic-
tures (COPs) that integrate data from a variety of sources, geospatially locating them on a single
map. After 9/11, the restructuring of the Intelligence Community (IC) seeks to remove the barriers
to joint intelligence work. From the 9/11 Commission Report [53]:

The importance of integrated, all-source analysis cannot be overstated. Without
it, it is not possible to "connect the dots." No one component holds all the relevant
information.

However, information sharing is at odds with information security. The primary mechanism
that the DoD uses to ensure the secrecy of sensitive information is physical isolation. The NIPRNet
(Unclassified but Sensitive Internet Protocol Router Network), SIPRNet (Secret Internet Protocol
Router Network) and JWICS (Joint Worldwide Intelligence Communications System) networks
compartmentalize unclassified, secret and top secret data. Such airgapping mitigates the potential
damage of successful attacks, but it also comes with a cost to effectiveness that is recognized by
members of the DoD. When asked to suggest problems for the Computer Science Study Group to
consider, the last item on the list that Mr. Richard Corson (USSOCOM JOC Chief) circulated read:

Cross Domain Capability: Good NSA approved cross domain capability to allow
working between UNCLAS, SECRET, and TOP SECRET networks. J

During CSSP visits, similar organizations also expressed dissatisfaction with the existing compart-
mentalization strategy, citing issues such as the cost of multiple wires and machines, the complex-
ity of approved information transfers (such as with USB storage devices), the number of different
security levels present when conducting coalition warfare, and the inability to run analysis tools
at multiple security levels. As a result, organizations such as USSOCOM, the NSA, and the DIA
are actively seeking alternative methods of Information Assurance (IA).

Although any solution to this secure data integration problem will require the synthesis of
techniques from the networking, cryptography, and operating systems domains, one crucial com-
ponent is the security of the user applications themselves. The software should permit authorized
users to manipulate and process confidential data from multiple domains, yet it must not allow
accidental or malicious violation of the end-to-end security policies in force. Establishing the se-
curity of application software is critical because existing OS-level access-control policies are too
coarse grained to account for important information flows, such as how parts of a document are
manipulated via user edits or transmitted over the network. Moreover, to warrant the NSA's ap-
proval, such software must be certified to ensure that it does not contain Trojan horses, covert
channels, or other unauthorized code.

Under current best practices, the detailed software auditing needed to both rule out malicious
code and verify that the software follows the appropriate security policies is extremely time con-
suming and expensive. Recent advances in programming language research suggests a better
path: develop abstractions that allow programmers to directly express security concerns in the

'Richard Corson, "CS2G Projects for the USSOCOM JOC", 23 Aug 2006

program itself. Such security-oriented languages, described in more detail below, make it easier and
cheaper to develop software that satisfies strong security policies. Of course, to know whether a
program written using a security-oriented language meets its IA requirements, it is necessary to
understand what properties the programming language itself provides. This so-called metatheory
problem—the problem of rigorously establishing the properties of a security-oriented program-
ming language—is the main research thrust of this project.

The novel contributions of the project include:

• Basic research that extends the current capabilities of using machine-checked proofs for ver-
ifying security properties and metatheory of complex, security-oriented languages.

• The development of a suite of tools and associated methodologies that demonstrate how to
apply the basic research, implemented in the context of the Coq proof assistant.

• Machine-checked proofs of type safety and noninterference, two critical security properties, for
a test-bed programming language called AURA, a security-oriented language that will target
the Microsoft .NET framework.

Outline The rest of this final report is laid out as follows: The next section describes security-
oriented languages in more detail and explains why establishing their metatheoretic properties is a
critical component in implementing cross-domain secure systems. Along the way, Section 2 also
describes the need for machine-checked metatheory for security-oriented languages. Section 3
provides background for AURA, the specific programming language that is the test-bed for this
research. The next three sections lay out results of the project: detailing the specific methodol-
ogy undertaken for the AURA test-bed (Section 4), the design of additional tools that aid in the
metatheory of programming languages (Section 5), and the evaluation of our tools and method-
ology that we performed to ensure that our efforts will apply beyond the verification of the AURA
language (Section 6).

2 Security-oriented languages: background and motivation

As observed above, manual auditing of software to determine whether it is secure enough for
use in mission-critical and cross-domain contexts is expensive and time consuming. Software
verification, once thought to be a panacea for such problems, has not panned out in practice,
largely because verifying even relatively small programs takes extraordinary skill and a huge
amount of effort. Such an approach is neither cost effective nor scalable.

The story is not entirely bleak, however. Advances in programming language design have
created remarkably effective tools that can rule out large classes of software safety problems. For
example, modern programming languages like Java and C#, if properly implemented, prevent
buffer overflows and a host of similar memory errors that plague C and C++ software.

In practice, the only scalable way to verify properties of large or numerous programs is to pro-
vide support during the application development process. The key idea from the programming
languages research domain is the use of static type systems that enable the compiler to perform
light-weight verification of fundamental safety properties. The win compared to traditional soft-
ware verification is clear: rather than meticulously verifying each program individually, a type
system guarantees properties about all programs accepted by the compiler of a safe language; fur-
thermore the analysis can be mostly automated, permitting it to scale to large software. There

Security-oriented Language

Source
Program

Policy

1 Q I Language Properties (Metatheory):
- type safety
- sound type inference
- noninterference S~\
- policy consistency \Ls

Compiler

 1

Executable Code

Run-time System

Operating System

Hardware

Compiler Properties-.
- semantics preserving
- good optimization ©

Execution Platform Properties:
- sound cryptography
- process isolation •—-v
- hardware attestation (3)

Figure 1: Architecture of a system built using a security-oriented language. On the left are the main
hardware and software artifacts that go into the development and deployment of a networked information
system. On the right are three key requirements for establishing the security of the system; the correctness
of the policy is a fourth criterion. This proposal's primary research thrust is machine-checked metatheory:
using computer-assisted proof development to validate the components in the dotted box.

is still an obligation to verify that the language's type system ensures the property of interest—
that is, to establish the language's metatheory—but this task can be undertaken once and for all by
the expert programming language designers and implementors. Ordinary programmers get the
safety benefits, without having to prove their programs correct by hand.

The advent of the Internet and the rise of security concerns have spawned a vibrant research
community focused on security-oriented programming languages [56,1,38,44,6,52,21], of which per-
haps the best known is Jif, developed by Myers et al. at Cornell [39]. Security-oriented languages
aim to achieve the scalability benefits of type systems for security properties beyond traditional
memory safety. Rooted in the pioneering work by Denning in the 1970s [16, 17], the goal is to
provide strong enforcement of information-flow and access-control policies, language support for
authorization, authentication and audit operations, and seamless integration with cryptography2.
Together, these features combine to provide a software-development platform that should sig-
nificantly ease the burden of building certifiably secure programs suitable for cross-domain and
mission critical applications. The need for such language-based security has been articulated both
by studies commissioned by the U.S. Government [47] and by leaders in the academic commu-
nity [48].

Figure 1 shows the key components of a system built using a security-oriented programming
language. As indicated at the top left of the figure, the programmer writes the software using
familiar datatypes and algorithms, but in addition to these usual abstractions, the language itself
provides mechanisms for describing confidentiality and integrity policies, authorization require-
ments, access control policies, and the like. Importantly, this design allows the information as-
surance policies to be expressed in terms of concepts that make sense for the application at hand
(such as 'document' or 'e-mail') , rather than the abstractions (such as 'file' or 'machine word')

2For an overview of just some of the work in this area, see Sabelfeld and Myers survey [46]

provided by the operating system.
Given the policy information and the program, the language implementation can verify, by

type checking, that the program meets the requirements of the policy—if the program does not
meet the requirements, it is rejected as "bad" and not accepted. For security-oriented languages
that enforce information-flow policies, there are two most relevant properties. The first is type
safety, which demonstrates that the language's abstractions are not violated (ruling out many
safety errors) and provides a solid foundation on which to build higher-level security properties.
The second is noninterference [22], which ensures that the only information flows through the pro-
gram are permitted by policy, thereby ensuring that confidential information is not inadvertently
(or maliciously) leaked to publicly accessible parts of the system.

Correctness of the secure system Returning to Figure 1, there are two more pieces of the dia-
gram that play a role in the security of the system. First, the language compiler, in addition to
producing bytecode or machine instructions that can be directly executed, is also responsible for
ensuring that the security policy is respected by the resulting executable code. Second, when the
program is run it will typically rely on features (such as process isolation) and services (such as
cryptography, the file system, or network access) provided by the underlying operating system
and hardware.

The security of the system therefore depends on at the correctness of at least four things
marked in the Figure: (1) the properties guaranteed by the type system, namely that the pro-
gram meets its policy, (2) the program transformations and optimizations done by the compiler,
(3) the network protocols, cryptography, etc. implemented in the hardware and OS, and, (4) the
security policy itself. Not surprisingly, because finding solutions for each of these correctness
problems is vital to creating secure software systems, all four have received considerable attention
from academia, the government, and industry.

Until recently, the best practice for establishing these correctness criteria was painstaking man-
ual audit, code reviews, and pencil and paper proofs checked by experts. Now the trend is to use
computer-aided verification techniques such as model checking, theorem provers, and mecha-
nized proof assistants, which enable rigorous auditing to scale to larger, more complex systems
than possible by hand. To achieve the high-confidence standards required for the cross-domain
and network-centric information applications envisioned by agencies in the DoD, it will be neces-
sary to apply such computer aided verification techniques to the four criteria mentioned above.

To date, there has been significant progress made in using these tools to address the correct-
ness criteria outlined above. A number of projects address the problem of compiler correctness
(criterion (2)), including: Leroy's machine-checked compiler back end for C [35]; Appel et al.'s
Foundational Proof Carrying Code project [37, 3, 2], and Crary's formalization of Foundarional
Typed Assembly Language (TALT) [15]. With respect to trusted run-time systems (criterion (3))
there have also been a variety of relevant projects: Sewell et al.'s machine-checked specification of
the TCP/IP protocol stack [11], Shi's [50] and Zhou et al.'s [57] work on verified device drivers,
and the Microsoft Singularity operating system [26] among others. There are also a variety of
tools for policy analysis, mostly aimed at determining consistency properties for access-control
(criterion (4)) [24,18,9, 36].

For criterion (1), however, there has been relatively little work: Klein and Nipkow have a
machine-checked model of a Java-like language [33] and Harper et al. have verified the type sys-
tem of Standard ML of New Jersey [34]. Both of these projects address only type safety—the pro-
gramming languages they consider aren't security-oriented and therefore lack support for strong
information-flow or access control security policies. To our knowledge there are few instances of

machine-checked metatheory for security-oriented languages. Most were undertaken for small,
toy programming languages: David Naumann verified a secure information flow analyzer for a
fragment of the Java language [40], and Jacobs, Pieters and Warnier [27] showed noninterference
for a simple imperative language in the PVS theorem prover. Also, Strecker showed noninter-
ference for Microjava in Isabelle/HOL [51]. Barthe et al's work on a secure variant of Java byte-
code [8] is the most comprehensive, but is aimed at bytecode, not source-level security properties.

2.1 The missing piece: Mechanized metatheory for security-oriented languages

The primary goal of this project was to address criterion (1) head-on: We propose to conduct basic
research about how to produce machine-checked proofs of the metatheory for security-oriented languages.

This is a worthwhile and significant task for several reasons. As we have seen, the security
of programs written in a security-oriented language depends crucially on the correctness of its
metatheory. Just as an unsound type system may create an opportunity for an attacker to exploit
a buffer overflow, any flaw in the noninterference analysis of a security-oriented language might
permit an application to leak sensitive information. This problem is particularly alarming in the
cross-domain network operations setting that is the primary interest of the organizations within
the DoD.

This task is also substantial and challenging. Security-oriented languages are complex arti-
facts. They offer a strong safety net to application programmers, but the security properties such
as safety and noninterference are difficult for the implementors to establish rigorously. Unfor-
tunately, rigorous proofs even about simpler programming languages are difficult for humans
to manage: they are long and tedious, with just a few interesting cases sprinkled among boring
ones (which must nevertheless be checked carefully to confirm that they really are boring!). The
difficulty of these proofs arises from the management of many details rather than from deep con-
ceptual difficulties (these arise earlier, in the process of getting the definitions right); yet small
mistakes or overlooked cases can invalidate large amounts of work. These effects are naturally
amplified as languages scale.3

Automated proof assistants offer the hope of significantly easing these problems. However,
despite encouraging progress in this area in recent years and the availability of several mature
tools (including Coq [10], Isabelle [41], ACL2 [32], and Twelf [43]), the application of these tools to
programming language problems is not commonplace.

Concretely, we will address these issues:

• Security-property specific techniques: Security-oriented languages require domain-specific
proof techniques to establish type safety and noninterference (the fundamental property for
information-flow assurance). Our hypothesis is that addressing this problem will require a
non-standard operational semantics and additional library support.

• Proof overhead and management: Managing the details of large, complex proofs is quite
difficult. Furthermore, those proofs must be robust with respect to the changes of an evolv-

3A typical example of the current state of affairs of programming language metatheory can be found in a recent
conference paper by Chen and Tarditi [13] on a new typed intermediate language for compiling object-oriented source
languages such as C#. The safety theorem for this language is stated in a standard form ("execution of a well-typed
program cannot get the abstract machine into an erroneous state"), and the proof of this fact is regarded by the authors
as too boring even to sketch in detail: the paper just says "By standard induction over the typing rules." However, the
details of this "standard" proof, in the accompanying technical report, run to 26 dense pages! What, realistically, are the
odds that anyone besides the authors has checked it carefully? Another point worth noting is that the paper's second
author is one of the lead compiler developers at Microsoft: this is not just an academic exercise!

ing language design. We have some experience solving this problem for specific tasks (such
as how to handle variable binding [4]), but we need more automation.

• Generality: Our efforts will have more impact if our results are general and applicable to the
specifications of other security-oriented languages. To ensure the robustness of our method-
ology, we will encapsulate the reusable parts of our infrastructure into libraries, use those to
formalize a middleweight version of Jif, and analyze our own design evolution.

In addition to the basic research needed to address these challenges, the output of this project
will be twofold: First, we plan to mechanize the metatheory of a test-bed security-oriented lan-
guage called AURA that will serve as a specific test case of the problems mentioned above. The de-
velopment of the AURA language itself is of independent merit, since it represents a cutting-edge
security-typed language. Second we will develop new tools and processes so that the metatheory
of similar languages may also be more easily mechanically verified, thereby making our results
accessible to other researchers and practitioners in the field.

Before explaining our approach to solving these challenges and our expected contributions in
more detail, it is first necessary to describe AURA, the security-oriented language that will serve
as the testing ground for our tools and techniques.

3 AURA: a security-oriented language test bed

AURA is a new security-oriented language developed at the University of Pennsylvania. AURA'S

programming model smoothly integrates information-flow and access control constraints with
the cryptographic enforcement mechanisms necessary in a distributed computing environment,
making it ideal for the kinds of cross-domain applications wanted by organizations within the
DoD. The design of the AURA language is summarized in the paper "AURA: A Programming
Language for Authorization and Audit", presented at the International Conference on Functional
Programming, September 2008 [28] and extended in Jeffrey Vaughan's dissertation [54], and the
paper ""Encoding Information Flow in AURA" [29].

The key innovation in the AURA project is the pervasive use of policy-justified data, a technique
that simultaneously generalizes both traditional multi-level security (MLS) labels [16, 20, 22, 46]
and capability-based trust-management mechanisms [12, 31]. Like MLS, policy-justified data as-
sociates security-policy-specific metadata with each data value in the system and propagates them
together to account for information flows. As in capability-based trust-management systems,
confidentiality and integrity policies for information-flow, access-control, and downgrading are
expressed using a rich policy logic that can be implemented using standard cryptographic tech-
niques (e.g., digital signatures). Unlike either of these techniques in isolation, however, their com-
bination in AURA provides remarkable synergy: Incorporating trust-management-style authoriza-
tion logics into the programming language allows the AURA compiler to ensure that programs do
appropriate access-control checks and logging, while using an authorization logic to describe the
security-levels of data in the system permits flexible, decentralized, and dynamic enforcement of
information-flow policies.

AURA provides following features:

• A decentralized authorization logic that enables software developers and system adminis-
trators to uniformly and declaratively specify access-control and information-flow policies,
including those that include downgrading (declassification and endorsement). The policies
are intended to support both confidentiality and integrity policies.

• Support for authentication using a first class notion of principal that gives the policy language
a natural interpretation using public-key infrastructure (PKI).

• Support for policy-justified data that connects the data being manipulated by the program
with run-time capabilities that carry both MLS policy and audit information.

• Language support for auditing that ensures that appropriate log entries are generated when-
ever a security-relevant operation is performed by the system. This audit trail includes the
evidence that justifies the action, not just a record of the action itself.

One important facet of the AURA language is that it requires system programmers to gener-
ate informative logs that explain why the information being processed has been released to vari-
ous constituents—logging is mandatory, not discretionary. This mandatory audit-trail is crucial for
helping find flaws both in the software components and in the policy components.

The AURA project implementation consists of a compiler and language run-time system that
provide appropriate compliance checking of authorization certificates, suitable cryptographic al-
gorithms, and efficient means of logging and manipulating the policy metadata. AURA is im-
plemented using Microsoft's .NET framework (specifically, the compiler will be written in the F#
language). Furthermore, the AURA compiler targets the .NET framework. This strategy provides
two important benefits: First, the .NET platform offers a path to interoperability with a wide array
of existing code and libraries. Second, the .NET framework provides existing support that sim-
plifies the implementation of compilers—our AURA compiler can take advantage of work already
done by the Microsoft developers.

One could implement a secure system in any programming language, but using a security-
oriented language like AURA provides a number of significant advantages: The compiler can
statically detect (via type checking) many illegal information flows through the application code,
thus yielding a high-degree of confidence in the security of the application itself. AURA can also
ensure that the program adheres to the specified access-control policy in force and, assuming that
the library interfaces have been implemented correctly (i.e., they are part of the trusted computing
base), AURA can ensure the appropriate logging of all information needed to justify the applica-
tion's behavior.

The AURA language implementation is available for download from http: //www. cis. upenn.
edu/~"stevez/sol/aura.html.

4 Mechanizing the Metatheory of AURA

To explain the correctness of AURA'S policy enforcement mechanisms, it is necessary to give a
coherent theoretical account of the combination of the features mentioned above. Beyond estab-
lishing that the programs verified by AURA'S type checker meet their intended security policies,
such theoretical foundations are necessary to justify various optimizations for compressing audit
log information. The theoretical foundations are also crucial for building tools that help adminis-
trators understand the impact of changes to a system's authorization policy.

Therefore, a concrete output of this project is the mechanically certified proofs of the metathe-
oretic properties of the AURA programming language. By verifying the security properties of its
type system, we obtain a corresponding theorem about every type-correct AURA program "for
free." This represents a significant savings over approaches based on verifying the security prop-
erties of programs written in languages that provide no such guarantees.

Our research will focus on mechanically verifying that the following important properties hold
for all type-correct AURA programs:

Type safety states that such programs do not "get stuck"—i.e., that linguistic abstractions are
not violated: memory references access only well-defined, in-scope objects and control-flow
only transfers to approved locations. Type safety provides a base level of system security,
for example eliminating attacks based on buffer-overruns, pointer forging, stack smashing,
etc.

Noninterference states that such programs regulate the flow of information by their security poli-
cies. Public values and outputs are unaffected by sensitive data, except by carefully anno-
tated declassification points. Noninterference is the cornerstone of language-based informa-
tion assurance.

To reduce complexity, AURA is specified by an elaboration semantics [25]. This process defines
AURA in terms of a simpler internal language, called Core-AURA. The translation between these
two languages is called elaboration. The elaboration process eliminates shallow syntactic differ-
ences between similar constructs and shrinks the number of features in the core, effectively mod-
ularizing the overall semantics. Elaboration also includes analysis and type inference, allowing
programmers to elide type and security annotations that may be deduced from context.

The external AURA language makes life easier for programmers, because they have a large
grammar of pithy linguistic constructs to draw from, and because they must spend less time writ-
ing "obvious" facts about their programs. On the other hand, the overall size of AURA and the
elision of these annotations makes it harder to reason about than Core-AURA. It is much simpler
to prove properties such as type safety and noninterference for Core-AURA than for AURA.

By formalizing the property of elaboration soundness, which states that programs that type check
in AURA also type check in Core-AURA, we can lift properties shown for the core language where
their proofs are tractable, to the source language, where programming is convenient. Therefore
we can divide the metatheoretic task of AURA into three pieces: showing type safety and nonin-
terference for Core-AURA, and showing elaboration soundness.

We used the Coq proof assistant [10] for this task. The Coq tool has already demonstrated
its usefulness for formalized metatheoretic reasoning [35, 8, 14, 4]. Coq is not a theorem prover;
the normal mode of operation is to check proofs expressed in its logic, the Calculus of Inductive
Constructions. To facilitate proof creation, Coq supports interactive proof development through
an extensible scripting language. The Coq proofs of type soundness and elaboration soundness
for AURA are available from http://www.cis.upenn.edu/~stevez/sol/aura.html.

4.1 Noninterference

In the paper "Encoding Information Flow in AURA" [29] we used ideas inspired by a Haskell
library for light-weight information-flow security [45] to encode information-flow types in AURA.
Our advantage over the Haskell approach is that we can use constructs for AURA s authorization
logic for the encoding. The main idea of our encoding is that we use principals to represent
security labels, and the type for a secret of type t protected at level H can be encoded as (x :
pf H says Reveal) —* t. Intuitively, without Hs private key, no one can create an assertion of the
type H says Reveal and therefore secrets protected at level H can not flow to public channels.
The noninterference theorem of such encoding depends upon the noninterference properties of
the authorization logic. Furthermore, expressive access-control policies specified in authorization
logic can be used to specify the policies for declassification.

8

This work makes the following contributions:

• We show how to encode information-flow types using authorization logics based on prior
work [55, 28].

• We prove the basic noninterference theorem of our encoding. The key components of the
proof are mechanized in the proof assistant Coq.

• We investigate through examples how declassification can be governed by access-control
policies.

4.2 Confidentiality Extension

Jeffrey Vaughan extended AURA with support for creating, manipulating and accessing confiden-
tial data [54]. In the AURAconf extension, confidential data and computations are given special
types and are automatically encrypted as needed. For example, the type int for Alice represents
an integer readable only by principal Alice. In this system, any user can build secret computa-
tions for any other. To unprivileged users, confidential data values and computations are opaque.
Values with for-types are encrypted, providing security against adversaries that are outside the
system and able to, for example, intercept network traffic.

AuRAconf integrates a novel mix of conventional and new ideas to provide intuitive confi-
dentiality operators. The language contains ciphertexts as first-class values. To enable precise,
typed-based analysis of these entities, the typechecker can access statically available private keys
and examine ciphertexts at compile time. When an appropriate key cannot be found, facts about
particular ciphertexts may be used by the type-checker.

In addition to syntactic soundness, AURAconf satisfies a noninterference property that gives
one precise, but narrow, characterization of the languages security benefits. Vaughan's work on
the AURAconf metatheory included a mechanized proofs of both of these properties. These proofs
were based on the mechanical proofs of the same properties of Core-AURA, demonstrating that
such proofs are amenable to reuse and extension.

5 Eliminating Boilerplate

The most promising way to prove metatheoretic results such as type soundness and noninterference
for realistic programming languages is to do so with mechanical assistance. In particular, Barthe
et al. report about their experience showing noninterference results for the Java Virtual Machine
(JVM) language [7]:

[W]e have machine-checked our results in the proof assistant Coq in order to gain
increased insurance in the soundness proof. Indeed, we feel it is important to resort
to proof assistants for managing the complexity of the definitions and proofs involved
in establishing noninterference, in particular because the definition of the type system
is intricate and the soundness proof involves some lengthy and error-prone proofs by
case analysis, as well as some unusual induction principle on the execution of pro-
grams.

However, little has been written about the engineering principles that permit such reasoning.
Few researchers describe exactly how the proof assistant provides the necessary automation for

metavar expvar, x, y, z ::= {{ repr-locally-nameless }}
grammar
exp, e, f, g :: : : =

I x :: :: var

I el e2 :: :: app

I \ x . e :: :: abs
(+ bind x in e +)

substitutions

single ex:: subst
freevars
ex : : f v

Figure 2: LNgen input file

managing the complexity and sheer size of proofs. Furthermore, our situation differs from previ-
ous work in mechanical metatheory verification. Barthe et al. started with an existing language.
Here, we would like to make mechanical verification a significant part of the language design
process.

This co-evolution has its trade-offs. The advantage of formalizing a new language is that we
are free to inform the specification of the language based on our experiences with the metatheoretic
reasoning. Importantly, it ensures that we are basing our design on sound reasoning principles,
and do not commit to inherently untenable design choices.

Furthermore, the fact that verification is part of the design process means that we may define
the semantics of the language in such a way so that our proofs are shorter, simpler, and more
modular. For example, binding constructs are notoriously difficult to reason about formally—by
representing all binding constructs with a single form we can localize that reasoning to one part
of the language.

The disadvantage to this process is that as the language grows and evolves, so must its mech-
anized proof. Therefore, we must pay close attention to the structure of our metatheory so that
they do not hinder language evolution. Ideally, we would like the structure to be agile and robust:
tweaking the design of the language should result in a manageable amount of change to existing
proof text.

5.1 The LNgen tool

To assist with the mechanical formalization of programming language, we developed the LNgen
tool. This tool specifically addresses the boilerplate from our methodology for reasoning about
programming language metatheory [4]. While we have libraries that factor out reasoning common
to all languages, the particular manner in which we represent syntax leads to a proliferation of
language-specific lemmas about low-level operations. Their statements and proofs follow directly
from the syntax of the language and thus are uninteresting artifacts of our methodology.

The paper "LNgen: Tool Support for Locally Nameless Representations" [5] describes our
tool in detail. LNgen uses the same input language as Ott [49], a tool for translating language
specifications written in an intuitive syntax into output for LATEX and proof assistants. While Ott
generates locally nameless definitionsdatatypes for syntax and relations, functions to calculate free
variables and substitutionsfrom the specification, LNgen provides recursion schemes for defining

10

1. fv-open-upper: fv (open e\ e?) C fv t\ U fv t2

2. fv-open-lower: fv ei C fv (open e\ e2)

3. fv-close: fv (close x e) = fv e x

4. fv-subst-upper: fv (subst e\ x ev) C fv e\ U (fv e2 x)

5. fv-subst-lower:(fv e2 x) C fv (subst c,\ x 02)

6. fv-subst-fresh: fv (subst e\ x e2) — fv e2 when x ^ fv e2

7. subst-fresh-eq: subst e\ x e2 = e2 when x $ fv e2

8. subst-subst: subst eix(subst e.2 y e) = subst (subst ei x e<i) y (subst ei x e) when?/ $
fv ei and y ± x

9. subst-open-var: subst e\ x (open (var_fy)e2) = open (var.f y)(subst t\ x e2) when x ^=
y and Ic ei

10. subst-abs: subst ej x (abs e2) = abs (close ^(subst eix(open (var_f 2)62))) when z $ fv e\ U
fv e2 U x and Ic ei

11. subst-close: subst ei.r(close ye.2) = close)y(subst eixc2) when x ^ y and y £ fv ej and Ic ej

12. subst-intro: open eie2 = subst eix(open (var_fx)e2) when x ^ fv e2

13. open-close: open (var_f x)(close x e) = e

14. close-open: close x(open (var_f x)e) = e when x ^ fv e

15. open-inj: open (var.f x)e,\ = open (var_f x)e2 implies e.\ = e.2 when x ^ fv e.x U fv e.2

16. close-inj: close x e\ = close x e2 implies e\ = e2

17. lc-unique: If (Ic p\ : Ic e) and (Ic P2 : Ic e), then Ic p\ = Ic P2

Figure 3: Sample lemmas produced by LNgen

functions over syntax and a large collection of infrastructure lemmas. LNgen automates much of
the tedium associated with the locally nameless style, even in our streamlined style, by allowing
users to focus on the more interesting aspects of their developments instead of on infrastructure
lemmas. In the next section, we describe in additional detail the input to and output from LNgen,
highlighting the important properties that are automatically proved.

LNgen is available and has been used for significant developments.4 LNgen relies on Ott to
generate the core locally nameless definitions for a language. It then generates additional defini-
tions and lemmas that are often needed in developmentsthe main benefit that it provides to users
over using Ott alone.

The input language for LNgen is a proper subset of the Ott specification language. Figure 2
shows an example input file for untyped lambda terms. The syntax is intended to mimic what

'LNgen is available from http://www.cis.upenn.edu/ sweirich/papers/lngen/

11

one might write informally. Ott is specifically designed for specifying programming languages
in a manner that is both convenient for people and machines, e.g., proof assistants. Thus, Ott
is a natural starting point for the input language to LNgen. We can take advantage of the work
that has gone into the design of Ott, not require users to learn a new specification language, and
allow our tool to work in parallel with Ott, relying on Ott for the generation of some of the Coq
definitions as well as LATEX output.

Below, we use the example to give a brief overview of the subset of Ott that LNgen supports;
a detailed description of the Ott language can be found elsewhere. The first part of an input
file for LNgen consists of a list of metavar declarations. Each declaration defines a new type
for object language variables LNgen and Ott define binding and substitution for these variables.
In Fig. 2, the text repr-locally-nameless indicates that binding should be represented us- ing a
locally nameless encoding. (Ott can also output definitions using a concrete representation of
binding.) The second part, the grammar, consists of a list of context-free grammar definitions
for nonterminals. Each declaration defines a new, inductively defined type for object-language
abstract syntax trees. Binding specifications may be attached to each constructor. For example in
the abs constructor, the metavariable x is a binding occurrence in the nonterminal e. The third part
follows the substitutions keyword and indicates that functions for substituting for free variables
should be generated. The final part follows the f reevars keyword and indicates that functions
for calculating free variables should be generated. Anything else in the file is ignored by LNgen
but may be processed by Ott, e.g., specifications of inductively defined relations.

The main benefit to using LNgen is that it automatically generates a collection of lemmas (with
their proofs) about expressions that are useful in metatheoretic reasoning. We highlight the most
important of these in Figure 3. The collection shown includes all of the lemmas that we discussed
in our previous work. For convenience, LNgen also generates several variants of the lemmas
shown and others besides. Our goal in picking the set of lemmas to generate was not to determine
some minimal "complete" set for working with metatheory but to generate a set that, from our
experience, we know to be useful in formalizations.

LNgen is able to automatically generate the proofs of each of the lemmas in Fig. 3 because, in
general, they are "boring" infrastructure lemmas whose proofs are straightforward inductions. At
any given point in a proof, there is little choice about what step to take next. Thus, most of the
proof scripts start by applying an induction tactic and then use a power tactic to apply a default set
of simplifications to the resulting subgoals. In cases where this is not sufficient, LNgen generates
more complex scripts based on our knowledge of how such proofs normally proceed. There is
no worry about the soundness of our reasoning: the scripts generated by LNgen must be run by
Coq to generate proof terms that are then checked. We favor generating proof scripts over proof
terms because it keeps the implementation of LNgen simple. Proof terms are specific to individual
lemmas and vary from language to language. By contrast, our tacticswhich are useful in their own
rightapply to multiple lemmas and do not need to vary from language to language. Unfortunately,
because Coqs tactic language is incompletely specified, it is impossible for us to guarantee that our
scripts will always succeed. These scripts have never failed on any of our case studies. However,
if some proof should fail, the effect is localized. The user may have to do that proof by hand (if
they would like to use that lemma) but other generated definitions, lemmas, and proofs will still
be available.

12

Language OTT LOC LNgen LOC Hand LOC
Core-AURA - - 12400
STLC 134 1533 108
Contracts [23] 438 3695 3854
Dependent Types [30] 991 7638 12963
Generative Type Abstraction [42] 1544 26197 -

Table 1: Lines of Code Comparison

6 Tool evaluation

To evaluate the genericity of our infrastructure (including LNgen), we used it as part of the three
new projects that we were simultaneously working on. These projects are each for general pur-
pose, strongly-typed languages, but their designs have many similarities to AURA. Therefore, we
are confident that the lessons that we learned from them will apply to the design of new security-
typed languages.

In performing these experiments, we were particularly interested in the following questions:
Do generated definitions accurately reflect the language specified by the user? Are lemmas, both
those found in our libraries and those that are generated by the tool, useful in practice? Do gen-
erated proofs pass Coqs proof checker without modification? In all cases, we found the tool to be
correct and useful for our purposes. The representations were accurate, the lemmas important,
and we never had any trouble with the output of LNgen.

Table 1 summarize these efforts, listing the lines of code in the specification of the language,
the lines of code output by LNgen, and the lines of code written by hand that used the LNgen
output. For comparison, we also include the line count from core-AURA, as well as for a small
example, the simply-typed lambda calculus (STLC).

Dependent types and program equivalence The definition of type equivalence is one of the
most important design issues for any typed language. In dependently-typed languages, because
terms appear in types, this definition must rely on a definition of term equivalence. In that case,
decidability of type checking requires decidability for the term equivalence relation.

Almost all dependently-typed languages require this relation to be decidable. Some, such as
Coq, Epigram or Agda, do so by employing analyses to force all programs to terminate. Con-
versely, others, such as DML, ATS, Omega, or Haskell, allow nonterminating computation, but
do not allow those terms to appear in types. Instead, they identify a terminating index language
and use singleton types to connect indices to computation. In both cases, decidable type checking
comes at a cost, in terms of complexity and expressiveness.

Conversely, the benefits to be gained by decidable type checking are modest. Termination
analyses allow dependently typed programs to verify total correctness properties. However, de-
cidable type checking is not a prerequisite for type safety. Furthermore, decidability does not
imply tractability. A decidable approximation of program equivalence may not be useful in prac-
tice.

The paper "Dependent types and Program Equivalence" [30], takes a different approach: in-
stead of a fixed notion for term equi valence, we parameterize our type system with an abstract
relation that is not n necessarily decidable. We then design a novel set of typing rules that require
only weak properties of this abstract relation in the proof of the preservation and progress lem-

13

mas. This design provides flexibility: we compare valid instantiations of term equivalence which
range from beta-equivalence, to contextual equivalence, to some exotic equivalences.

Because the goal of this work was to make the exact properties of program equivalence that are
required for type soundness precise, it made sense to formalize this work using the Coq proof as-
sistent. This project was an excellent case study for LNgen: the specification of the entire language
fell within the capabilities of the LNgen tool. Therefore, we used Ott to specify the language and
LNgen to generate its output. Once this was set up, it took less than two weeks to state and prove
the desired properties of the language—the experience of AURA as well as the availability of the
LNgen tool meant that the task of producing a machine-checked version of the programming lan-
guage metatheory was not a significant cost to the project. Furthermore, confidence in our results
was significantly increased due to the presence of these proofs. LNgen was an important part
of the project—without the availability of LNgen, we would not have been able to complete the
proofs before the conference deadline. Because the tool provided every infrastructure lemma we
needed, we were able to focus their efforts on the novel aspects of their languages design.

Contracts made Manifest Higher-order contracts, introduced by Findler and Felleisen, are a
language construct that extend dynamic contract checking to languages with first-class functions.
Since their introduction, many variants have been proposed. Broadly, these fall into two groups:
some follow Findler and Felleisen in using latent contracts, purely dynamic checks that are trans-
parent to the type system; others use manifest contracts, where refinement types record the most
recent check that has been applied to each value. These two approaches are commonly assumed to
be equivalent-different ways of implementing the same idea, one retaining a simple type system,
and the other providing more static information.

The paper "Contracts Made Manifest" [23] extends the work of Gronski and Flanagan, who
defined a latent calculus Ac and a manifest calculus A/,, gave a translation cp from Ac to A^, and
proved that, if a Ac term reduces to a constant, then so does its </> image. We enrich their account
with a translation i/> from Xh to Ac and prove an analogous theorem. The paper then generalizes the
whole framework to dependent contracts, whose predicates can mention free variables. This ex-
tension is both pragmatically crucial, supporting a much more interesting range of contracts, and
theoretically challenging. We define dependent versions of A^ and two dialects (lax and picky)
of Ac, establish type soundness—a substantial result in itself, for A^—and extend <p and ip accord-
ingly. Surprisingly, the intuition that the latent and manifest systems are equivalent now breaks
down: the extended translations preserve behavior in one direction but, in the other, sometimes
yield terms that blame more.

In the process of this work, we found that there was one part that was particularly well-suited
to formalization. Most of the work went beyond the capabilities of tools like LNgen (requiring
type-directed translations and the definitions of logical relations). However, one particular thorny
part of the work relied on properties of reduction of the term language. This part was intricate,
but not very enlightening to the project as a whole. The sixty page technical report that accom-
panies this paper and provides (paper) proofs of the theorems, included this part as an appendix.
Therefore, we decided to mechanically verify the results. Graduate student Michael Greenberg,
who did not have prior experience with AURA, was nevertheless able to use the output of LNgen
to prove the necessary results in Coq in about one month worth of effort. Greenberg reported that
"All in all, LNgen was great—it covered most of the stupid facts I needed." The tool failed to
generate only one set of lemmas, which concerned how substitution maintains invariants about
the free variables of terms.

14

Generative Type Abstraction and Type-level Computation Modular languages support gen-
erative type abstraction, ensuring that an abstract type is distinct from its representation, except
inside the implementation where the two are synonymous. This well-established feature is in ten-
sion with the non-parametric features of newer type systems, such as indexed type families and
GADTs. In the paper "Generative Type Abstraction and Type-level Computation" [42] we solve
the problem by using kinds to distinguish between parametric and non-parametric contexts. The
result is directly applicable to the Haskell programming language, which is rapidly developing
support for type-level computation, but the same issues should arise whenever generativity and
non-parametric features are combined.

We involved the Ott and the LNgen tool early in the development of this work, using these
tools to specify the language under study, ensure that we had a complete specification, and verify
consistency properties of that specification. As Figure 1 demonstrates, the language studied by
this paper is the largest case study that we have performed. Because of the size of the language and
the nature of the project we never mechanically proved any results about that specification—our
reasoning was on paper only. Although the LNgen specification evolved as the design evolved,
we ultimately abandoned the LNgen part of the specification. (The line counts are from the last
version that worked with LNgen.) One reason for this decision was time pressure—we were
working to a paper deadline, and this part was not on the critical path. Another reason was that
we choose to include features in the language that went beyond the capabilities of LNgen.

However, even as a pure specificational tool during the design process, making the system go
through Ott and LNgen to produce a Coq specification was valuable. The fact that we could type
check the Coq output means that certain bugs in the spec were eliminated much earlier than they
would have been. Furthermore, the binding infrastructure produced by LNgen was beneficial to
the small experiments that we did on the specification, even if we never produced a complete
mechanical proof of our results.

7 Conclusions

Security-oriented languages are a key ingredient to the design of secure software systems. The
provide specific functionality, such as mechanisms for authorization, auditing, confidentiality, and
the tracking of information-flow throughout the system. Programs written in these languages
that take advantage of these features, can be automatically shown to possesses key properties,
essential to the security of the entire system. However, these results critically rely on the meta-
theoretic properties of the languages themselves. This project has demonstrated both that it is
feasible to mechanically check these properties, and that the overheads of the engineering process
of producing mechanically verified languages are reasonable.

15

References

[1] Martin Abadi, Anindya Banerjee, Nevin Heintze, and Jon Riecke. A core calculus of depen-
dency. In Proc. 26th ACM Symp. on Principles of Programming Languages (POPL), pages 147-160,
San Antonio, TX, January 1999.

[2] Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A stratified semantics of general
references embeddable in higher-order logic. In Proceedings of the 17th Annual IEEE Symposium
on Logic in Computer Science (LICS 2002), pages 75-86, Copenhagen, Denmark, July 2002.

[3] Andrew W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium on
Logic in Computer Science (LICS '01), June 2001.

[4] Brian Aydemir, Arthur Chargueraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In ACMSIGPLAN-S1CACT Symposium on Princi-
ples of Programming Languages (POPL), pages 3-15, January 2008.

[5] Brian Aydemir and Stephanie Weirich. Lngen: Tool support for locally nameless represen-
tations. Technical Report MS-CIS-10-24, Computer and Information Science, University of
Pennsylvania, June 2010.

[6] Anindya Banerjee and David A. Naumann. Secure information flow and pointer confinement
in a Java-like language. In Proc. of the 15th IEEE Computer Security Foundations Workshop, 2002.

[7] G. Barthe, D. Pichardie, and T. Rezk. A certified lightweight non-interference Java bytecode
verifier. Technical report, INRIA, 2006. http: //hal. inria. f r/inria-00106182.

[8] Gilles Barthe, David Pichardie, and Tamara Rezk. A certified lightweight non-interference
Java bytecode verifier. In Rocco De Nicola, editor, ESOP, volume 4421 of Lecture Notes in
Computer Science, pages 125-140. Springer, 2007.

[9] Elisa Bertino, Barbara Catania, Elena Ferrari, and Paolo Perlasca. A logical framework for
reasoning about access control models. ACM Trans. Inf. Syst. Secur., 6(1):71-127, 2003.

[10] Yves Bertot and Pierre Casteran. Interactive Theorem Proving and Program Development, volume
XXV of EATCS Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[11] Steven Bishop, Matthew Fairbairn, Michael Norrish, Peter Sewell, Michael Smith, and Keith
Wansbrough. Rigorous specification and conformance testing techniques for network proto-
cols, as applied to TCP, UDP, and Sockets. In Proceedings of SICCOMM 2005 (Philadelphia),
August 2005.

[12] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust management. Technical
Report 96-17, 28,1996.

[13] Juan Chen and David Tarditi. A simple typed intermediate language for object-oriented lan-
guages. In POPL '05: Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, pages 38-49, New York, NY, USA, 2005. ACM Press.

[14] Adam Chlipala. A certified type-preserving compiler from lambda calculus to assembly lan-
guage. In Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design
and Implementation (PLDl'07), 2007.

1

[15] Karl Crary. Toward a foundational typed assembly language. In Symposium on Principles of
Programming Languages, January 2003.

[16] Dorothy E. Denning. A lattice model of secure information flow. Communications of the ACM,
19(5):236-243, May 1976.

[17] Dorothy E. Denning and Peter J. Denning. Certification of Programs for Secure Information
Flow. Comm. of the ACM, 20(7):504-513, July 1977.

[18] John DeTreville. Binder, a logic-based security language. In M.Abadi and S.Bellovin, editors,
Proceedings of the 2002 Symposium on Security and Privacy (S&P'02), pages 105-113, Berkeley,
California, May 2002. IEEE Computer Society Press.

[19] Office of Secretary of Defense Director, Force Transformation. The implementation of
network-centric warfare, January 2005. http: //www. oft. osd.mil.

[20] R. J. Feiertag, K. N. Levitt, and L. Robinson. Proving multilevel security of a system design.
Proc. 6th ACM Symp. on Operating System Principles (SOSP), ACM Operating Systems Review,
ll(5):57-66, November 1977.

[21] Cedric Fournet, Andrew D. Gordon, and Sergio Maffeis. A type discipline for authorization
policies. In 14th European Symposium on Programming, ESOP 2005, volume 3444 of Lecture
Notes in Computer Science, pages 141-156. Springer-Verlag, 2005.

[22] J. A. Goguen and J. Meseguer. Security policies and security models. In Proc. IEEE Symposium
on Security and Privacy, pages 11-20. IEEE Computer Society Press, April 1982.

[23] Michael Greenberg, Benjamin Pierce, and Stephanie Weirich. Contracts made manifest.
In 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages (POPL),
pages 353-364, Madrid, Spain, January 2010. ACM.

[24] J. Halpern and V. Weissman. Using first-order logic to reason about policies. In Proceedings of
the 16th IEEE Computer Security Foundations Workshop (CSFW'03), 2003.

[25] Robert Harper and Chris Stone. A type-theoretic interpretation of Standard ML. In Gordon
Plotkin, Colin Stirling, and Mads Tofte, editors, Proof, Language, and Interaction: Essays in
Honor of Robin Milner. MIT Press, 2000.

[26] Galen Hunt and James Larus. Singularity: Rethinking the Software Stack. Operating Systems
Review, 41(2):37-49, April 2007.

[27] B. Jacobs, W. Pieters, and M. Warnier. Statically checking confidentiality via dynamic labels.
In Workshop on Issues in the Theory of Security (WITS'05), 2005.

[28] Limin Jia, Jeffrey A. Vaughan, Karl Mazurak, Jianzhou Zhao, Luke Zarko, Joseph Schorr, and
Steve Zdancewic. Aura: A programming language for authorization and audit. In Proc. of
the 13th ACM SIGPLAN International Conference on Functional Programming (ICFP), Victoria,
British Columbia, Canada, September 2008.

[29] Limin Jia and Steve Zdancewic. Encoding information flow in aura. In Workshop on Program-
ming Languages and Analysis for Security (PLAS), pages 17-29, 2009.

[30] Limin Jia, Jianzhou Zhao, Vilhem Sjoberg, and Stephanie Weirich. Dependent types and pro-
gram equivalence. In 37th ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), pages 275-286, Madrid, Spain, January 2010. ACM.

[31] Trevor Jim. SD3: a trust management system with certificate revocation. In IEEE Symposium
on Security and Privacy, pages 106-115, 2001.

[32] Matt Kaufmann, J Strother Moore, and Panagiotis Manolios. Computer-Aided Reasoning: An
Approach. Kluwer Academic Publishers, 2000.

[33] Gerwin Klein and Tobias Nipkow. A machine-checked model for a Java-like language, virtual
machine and compiler. Technical Report 0400001T1, National ICT Australia, Sydney, March
2004.

[34] Daniel K. Lee, Karl Crary, and Robert Harper. Towards a mechanized metatheory of Stan-
dard ML. In POPL '07: Proceedings of the 34th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 173-184. ACM Press, 2007.

[35] Xavier Leroy. Formal certification of a compiler back-end or: Programming a compiler with a
proof assistant. In POPL '06: Conference Record of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 42-54. ACM Press, 2006.

[36] Ninghui Li, John C. Mitchell, and William H. Winsborough. Beyond proof-of-compliance:
security analysis in trust management. /. ACM, 52(3):474-514, 2005.

[37] Neophytos G. Michael and Andrew W. Appel. Machine instruction syntax and semantics
in higher order logic. In 17th International Conference on Automated Deduction (CADE-I7).
Springer-Verlag (Lecture Notes in Artificial Intelligence), June 2000.

[38] Andrew C. Myers. JFlow: Practical mostly-static information flow control. In Proc. 26th
ACM Symp. on Principles of Programming Languages (POPL), pages 228-241, San Antonio, TX,
January 1999.

[39] Andrew C. Myers, Stephen Chong, Nathaniel Nystrom, Lantian Zheng, and
Steve Zdancewic. Jif: Java information flow. Software release. Located at
http://www.cs.cornell.edu/jif, July 2001.

[40] David Naumann. Verifying a secure information flow analyzer. In Theorem Proving in Higher
Order Logics (TPHOLs), 2005.

[41] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL: A Proof Assistant For
Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer-Verlag, 2002.

[42] Simon Peyton Jones, Dimitrios Vytiniotis, Stephanie Weirich, and Steve Zdancewic. Genera-
tive type abstraction and type-level computation. To appear in POPL 2011, 2011.

[43] Frank Pfenning and Carsten Schurmann. System description: Twelf — A meta-logical frame-
work for deductive systems. In Harald Ganzinger, editor, Automated Deduction, CADE 16:
16th International Conference on Automated Deduction, volume 1632 of Lecture Notes in Artificial
Intelligence, pages 202-206. Springer-Verlag, 1999.

[44] Francois Pottier and Vincent Simonet. Information flow inference for ML. In Proc. 29th ACM
Symp. on Principles of Programming Languages (POPL), Portland, Oregon, January 2002.

[45] Alejandro Russo, Koen Claessen, and John Hughes. A library for light-weight information-
flow security in haskell. In Haskell '08: Proceedings of the first ACM SIGPLAN symposium on
Haskell, pages 13-24, New York, NY, USA, 2008. ACM.

[46] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5-19, January 2003.

[47] Fred B. Schneider, editor. Trust in Cyberspace. National Academy Press, 1999.

[48] Fred B. Schneider, Greg Morrisett, and Robert Harper. A language-based approach to secu-
rity. In Reinhard Wilhelm, editor, Informatics: 10 Years Back, 10 Years Ahead, volume 2000 of
Lecture Notes in Computer Science, pages 86-101. Springer-Verlag, Heidelberg, 2001.

[49] Peter Sewell, Francsco Zappa Nardelli, Scott Owens, Gilles Peskine, Thomas Ridge, Susmit
Sarkar, and Rok StrniSa. Ott: Effective tool support for the working semanticist. In (ICFP '07)
Proc. of the 2007 ACM SIGPLAN International Conf. on Functional Programming., pages 1-12.
ACM, 2007.

[50] Rui Shi. Implementing reliable Linux device drivers in ATS. In PLPV '07: Proceedings of the
2007 Workshop on Programming Languages Meets Program Verification, pages 41-46. ACM, 2007.

[51] Martin Strecker. Formal analysis of an information flow type system for Microjava (extended
version). Technical report, Technische Universitat Munchen, July 2003.

[52] Stephen Tse and Steve Zdancewic. Designing a Security-typed Language with Certificate-
based Declassification. In Proc. of the 14th European Symposium on Programming, 2005.

[53] US national commission on terrorist attacks upon the United States, 9/11 commission report,
2004. Available at http://www.9-llcommission.gov.

[54] Jeffrey A. Vaughan. AURA: Programming with Authorization and Audit. PhD thesis, University
of Pennsylvania, 2009.

[55] Jeffrey A. Vaughan, Limin Jia, Karl Mazurak, and Steve Zdancewic. Evidence-based audit.
In Proc. of 21st IEEE Computer Security Foundations Symposium (CSF), pages 177-191. IEEE
Computer Society Press, 2008.

[56] Dennis Volpano, Geoffrey Smith, and Cynthia Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167-187,1996.

[57] Feng Zhou, Jeremy Condit, Zachary R. Anderson, Ilya Bagrak, Robert Ennals, Matthew Har-
ren, George C. Necula, and Eric A. Brewer. Safedrive: Safe and recoverable extensions using
language-based techniques. In 7th Symposium on Operating Systems Design and Implementation
(OSDI '06), November 6-8, Seattle, WA, USA, pages 45-60. USENIX Association, 2006.

